TESTING CHEBYSHEV'S BIAS FOR PRIME NUMBERS UP TO 5*10¹⁵

Andrey Sergeevich SHCHEBETOV

Lomonosovskaya School

Moscow, Russia

Presentation for The Intel International Science and Engineering Fair Intel ISEF 2019

> Phoenix, Arizona May 12-17, 2019

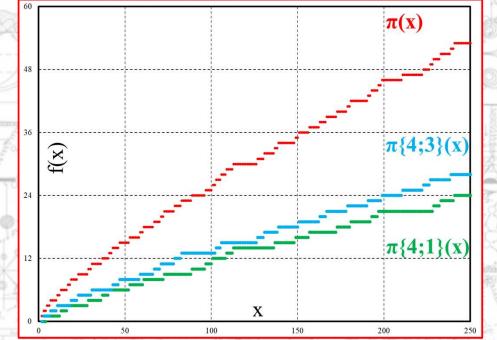
GOALS AND TARGETS FOR THE PROJECT

- To test Chebyshev's Bias for 15 "most biased prime number races"
- To extend the range tested by mathematicians 5000 times to 5*10¹⁵ (5*10¹⁵ – the upper bound and the last number of the tested range)
- To define exactly the main characteristics of all sign-changing zones (known, as well as newly found), including their beginning, end and number of terms
- To check newly discovered zones against predictions
- To test and confirm all previously known sign-changing zones for $\Delta_{q,a,b}(x)$ up to 10^{12}
- To make all primary data available to a wide group of mathematicians working in number theory field through OEIS publication and deposit in author's own repository
- To define all data in a uniform way and with unified format

The main goal of the project was to test Chebyshev's Bias for 15 selected moduli and pairs of residues for prime numbers up to 5*10¹⁵.

LETTER FROM CHEBYSHEV TO FUSS (1853)

	A SHIMA THE ARE A STR		I THEFT I S AND S DESIGNATION AND ADDRESS	A STATE IN THE STATE OF THE STA
	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Tripaynin Ar. Bo Bord Techning	Письмо профессора Чебы пева къг. с. Фусу су от новой теоремъ, относящейся къ числу просивку. чиселъ вида 4 <i>n</i> + 1 и 4 <i>n</i> + -3. 11 (23) макт 1853. 13 (23) макт 1853. За по стакти се которов Вы коста притивал мот въсъдованія, слакти се мают. представать Вак вела результать, отвоспійся ко. 3. Стакти се мают. представать Вак вела результать, отвоспійся ко. 3. Стактивал предбавое вырысенія сумий, которыя опреділяють тако просталь чисель вида 4 <i>n</i> + 1 в яда 4 <i>n</i> + 3, катакіх до якого тако простават инерска, я притивал к за изпользи, от поста предкаво вырысенія сумий, которыя опреділяють тако простават чисела вида 4 <i>n</i> + 1 в яда 4 <i>n</i> + 3, катакіх до якого тако простават чисела вида 4 <i>n</i> + 1 в яда 4 <i>n</i> + 3, катакіх до якого тако простават чисела вида 4 <i>n</i> + 1 в яда 4 <i>n</i> + 3, катакіх до якого тако простават чисела на поотичена колини стака, за чисела вида 4 <i>n</i> + 1, тако то, есля виз часа простаку чисель вида 4 <i>n</i> + 3, которыя менале тако то, есля виз часа простаку чисель вида 4 <i>n</i> + 3, которы менале тако то, есля виз часа простаку чисель вида 4 <i>n</i> + 4, 4 <i>n</i> - <i>n</i>	<page-header><text><text><text></text></text></text></page-header>
Agg 1	ALL THE STATISTICS TO BE AND THE STATE	A THE THE ALL ME	The Manufacture of the Andrews of the and	Star A Contraction
	the set FINT I when a lot	V AA ALZEN AN ALZE	which which has the first of the	A A A A A A A A A A A A A A A A A A A


Chebyshev's Bias (Chebyshev, 1853). "There is a notable difference in the splitting of the prime numbers between the two forms 4n + 3, 4n + 1: the first form contains a lot more than the second."

In 1853 Chebyshev suggested that there are always more primes of the form 4n + 3 than primes of the form 4n + 1.

CHEBYSHEV'S BIAS FOR TWO RESIDUES

 $\pi(x) = \pi_{4,3}(x) + \pi_{4,1}(x) + 1$ $\Delta_{4,3,1}(x) = \pi_{4,3}(x) - \pi_{4,1}(x)$

 $\pi(x)$ – prime counting function q = 4 – modulus a = 3 and b = 1 – residues (a, q) = 1, (b, q) = 1

Chebyshev's Bias(1853): $\Delta_{4,3,1}(x) > 0$ for all x

- Initial conjecture for q = 4, a = 3, b = 1
- Similar situation for q = 3, a = 2, b = 1
- *«Prime number races»*

Chebyshev's Bias is easily formulated through prime counting function for two residues a and b modulo q.

CHEBYSHEV'S BIAS EXAMPLE FOR TWO RESIDUES MOD 4

The second	X	$\pi(\mathbf{x})$	#{4n + 2}	$#{4n+3}$	$#{4n + 1}$	Δ { 4 , 3 , 1 }	%
SA	100	25	1	13	11	2	2.000%
ta	200	46	1	24	21	3	1.500%
1	300	62	1	32	29	3	1.000%
in the second	400	78	1	40	37	3	0.750%
	500	95	1	50	44	6	1.200%
ê.,	600	109	1	57	51	6	1.000%
now	700	125	1	65	59	6	0.857%
6	800	139	1	71	67	4	0.500%
X.	900	154	1	79	74	5	0.556%
X.	1000	168	1	87	80	7	0.700%
鄧	2000	303	1	155	147	8	0.400%
	3000	430	1	218	211	7	0.233%
	4000	550	1	280	269	11	0.275%
	5000	669	1	339	329	10	0.200%
	6000	783	1	399	383	16	0.267%
X	7000	900	1	457	442	15	0.214%
-AS	8000	1007	1	507	499	8	0.100%
72	9000	1117	1	562	554	8	0.089%
23	10,000	1229	1	619	609	10	0.100%
1 Alexandre	20,000	2262	1	1136	1125	11	0.055%

The phenomena is small, but permanent

 Effective percentage has tendency to decrease

 At Chebyshev's times and 100 years after no negative zones for Δ_{4,3,1} were known
 Only in 1957 the first and the second zones were discovered

The first and second zones where Chebyshev's Bias was violated were discovered only in 1957 – more than 100 years after the letter to Fuss.

MAIN WORKS IN CHEBYSHEV'S BIAS AREA

- **1853** Letter from P.L. Chebyshev to P.N. Fuss
- **1914** J. E. Littlewood, «Sur la distribution des nombres premiers»
- **1957** J. Leech, «Note on the distribution of prime numbers»
- **1959** D. Shanks «Quadratic Residues and the Distribution of Primes»
- **1962** S. Knapowski and P. Turán, «Comparative Prime-Number Theory»
- **1978** C. Bays u R. Hudson, «Details of the first region of integers x with $\pi{3,2}(x) < \pi{3,1}(x)$ »
- **1978** *R. H. Hudson u C. Bays, «The appearance of tens of billion of integers x with* π {24, 13}(*x*) < π {24, 1}(*x*) *in the vicinity of* 10^12*»*
- **1979** *C. Bays u R. H. Hudson, «Numerical and graphical description of all axis crossing regions for the moduli 4 and 8 which occur before 10^12»*
- **1994** M. Rubinstein u P. Sarnak, «Chebyshev's Bias»
- **2001** C. Bays, K. Ford, R. H. Hudson u M. Rubinstein, «Zeros of Dirichlet L-functions near the Real Axis and Chebyshev's Bias»
- **2001** K. Ford u R. H. Hudson, «Sign changes in $pi\{q;a\}(x) pi\{q;b\}(x)$ »
- 2006 A. Granville u G. Martin, «Prime Number Races»
- 2012 G. Martin u J. Scarfy, «Comparative Prime Number Theory»
- **2013** D. Fiorilli u G. Martin, «Inequities in the Shanks-Renyi prime number race: an asymptotic formula for the densities»

«Chebyshev's conjecture was the origin for a big branch of modern Number Theory, namely, comparative prime-number theory» as was written by S.V. Konyagin (Russia) and K. Ford (USA) in a joint paper.

CHEBYSHEV'S BIAS AND OTHER THEOREMS

Dirichlet prime number theorem for arithmetic progression (Dirichlet, 1837). Let a, q $\in Z^+$ be such that gcd(a, q) = 1. Then there are infinitely many prime numbers p such that $p \equiv a \pmod{q}$. Therefore, as a result: $\frac{\#\{\text{primes } qn + a \leq x\}}{\#\{\text{primes } qn + b \leq x\}} \rightarrow 1 (as \ x \rightarrow \infty)$

Theorem (Littlewood, 1914). There are arbitrarily large values of x for which there are more primes of the form 4n + 1 up to x than primes of the form 4n + 3. In fact, there are arbitrarily large values of x for which:

 $\#\{\text{primes } 4n + 1 \le x\} - \#\{\text{primes } 4n + 3 \le x\} \ge \frac{1}{2} \frac{\sqrt{x}}{\ln x} \ln \ln \ln x$

Conjecture (Knapowski and Turán, 1962). As $X \to \infty$, the percentage of integers $x \le X$ for which there are more primes of the form 4n + 3 up to x than of the form 4n + 1 goes to 100%.

Theorem (Kaczorowski, Rubinstein-Sarnak, 1994). If the Generalized Riemann Hypothesis GRH is true, then the Knapowski-Turán Conjecture is false.

The connection between Chebyshev's Bias and Generalized Riemann Hypothesis (GRH) was proven in 1994.

CHEBYSHEV'S BIAS AND OTHER THEOREMS

Generalized Riemann Hypothesis (GRH) (Piltz, 1884): For any χ mod q and all complex $s = \sigma + it$ such as $0 \le \sigma \le 1$ and $L(\sigma + it, \chi) = 0$, all the non-trivial zeroes of the Dirichlet L-function $L(s, \chi)$ (Re(s) > 1) lie on the straight line Re(s) = 1/2.

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_{p \text{ primes}} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1}$$

Dirichlet L-function for "race of primes 4n + 3 vs. primes 4n + 1" (Re(s) > 1):

$$L(s) = \frac{1}{1^s} - \frac{1}{3^s} + \frac{1}{5^s} - \frac{1}{7^s} + \frac{1}{9^s} - \frac{1}{11^s} + \cdots$$

Therefore, the sum over primes in arithmetic progression is equivalent to the sum over zeros of Dirichlet L-function.

Rubinstein and Sarnak (1994): The sum over primes in arithmetic progressions results into:

$$\sum_{k \ge 1} \sum_{\substack{k \le x \\ p^k = a \mod q}} \frac{1}{k} = \pi(x; q, a) + \frac{1}{2} |\{p \le \sqrt{x}: p^2 \equiv a \mod q\}| + error$$

The second term in the formula is the source of Chebyshev's Bias. Chebyshev's Bias (modern formulation): There are more primes of the form qn + a than of the form qn + b if a is non-square and b is a square residue modulo q.

The source and the origin of Chebyshev's Bias is the presence of the square residue b among residues modulo q.

DISPROVAL OF KNAPOWSKI-TURÁN CONJECTURE *Maximum percentage of values of* $x \le X$ *for which* $\pi_{4,1}(x) > \pi_{4,3}(x)$

Range	Max %		
0-10 ⁷	2.6%) <u>p</u> lei	Leech: 1957
10⁷-10⁸	0.6%	SR.	Lehmer: 1969
10 ⁸ -10 ⁹	0.1%		Lehmer: 1969
10⁹-10 ¹⁰	1.6%		Bays & Hudson: 1979
10 ¹⁰ -10 ¹¹	2.8%	1	Bays & Hudson: 1979-19

With exact formulation of Knapowski-Turán conjecture in 1962 the extensive search for Δ_{q,a,b} sign-changing zones started for various moduli and residues
It became clear that Knapowski-Turán conjecture was false after a number breakthrough works and papers of C. Bays and R.H. Hudson (USA) who discovered several new sign-changing zones for Δ_{4,3,1} between 1979 and 1996

Empirical data supported Knapowski-Turán conjecture up to 10⁹ only. After Bays and Hudson research it became clear that it was wrong.

EIV	ILI		AL	KESULIS: 195 /	-1996 (q = 3, 4 & 8)	Barry Charles VAR
Stat	tus oj	$f \Delta_{q}$	a,b(x)) sign-changing zones	s search from 1957 to 1	996
q	#	b	a	Beginning	Discovered	and and an and a state of the second
3	1	1	2	608,981,813,029	Bays & Hudson, 1978	Contraction of the second seco
4	1	1	3	26,861	Leech, 1957	
4	2	1	3	616,841	Leech, 1957	
4	3	1	3	12,306,137	Lehmer, 1969	
4	4	1	3	951,784,481	Lehmer, 1969	● ~ 7 known zones
4	5	1	3	6,309,280,709	Bays & Hudson, 1979	
4	6	1	3	18,465,126,293	Bays & Hudson, 1979	
4	7	1	3	1,488,478,427,089	Bays & Hudson, 1996	Stern St. Land & Land mapped the server
8	1	1	3	Not known up to 10^{12}	Not discovered	
8	1	1	5	588,067,889	Bays & Hudson, 1979	
8	2	1	5	35,615,130,497	Bays & Hudson, 1979	
8	1	1	7	Not known up to 10^{12}	Not discovered	

The search for new zones had been very slow - sometimes decades passed between the discoveries

• Several outstanding mathematicians such as J. Leech ("Leech lattice"), D.H. Lehmer ("Lucas-Lehmer primality test") and C. Bays & R.H. Hudson (prime number research and estimates for "Skewes number") contributed greatly to the search

• Most sign-changing zones (7) were found for $\Delta_{4,3,1}$ There had been extensive search for Δ sign-changing zones up to 10^{12} from 1957 to 1996.

q	#	b	a	Beginning	Discovered	A Crissen Barry Maria
12	1	1	5	Not known up to 10^{12}	Not discovered	
12	1	1	7	Not known up to 10 ¹²	Not discovered	2
12	1	1	11	Not known up to 10 ¹²	Not discovered	
24	1	1	5	Not known up to 10 ¹²	Not discovered	
24	1	1	7	Not known up to 10 ¹²	Not discovered	
24	1	1	11	Not known up to 10^{12}	Not discovered	
24	1	1	13	«Around 10 ¹² »	Bays & Hudson, 1978	ot defined exactly
24	1	1	17	Not known up to 10^{12}	Not discovered	
24	1	1	19	Not known up to 10^{12}	Not discovered	
24	1	1	23	Not known up to 10 ¹²	Not discovered	
	N. A. L.		and showing the second		V_ZANN // WARMING PROVING A LOW OF A PORTAL	- SF 633 / N

- Apart from ∆_{24,13,1} there had been no other found ∆ sign-changing zones for q = 12
 & 24
- For $\Delta_{24,13,1}$ the first zone was defined only approximately without exact boundaries and number of terms

Mod 12 and 24 presented a major problem as there had been almost nothing discovered and known about them.

EMPIRICAL RESULTS: 1996-2016

Status of $\triangle q, a, b(x)$ sign-changing zones search from 1996 to 2016

9	q	#	b	a	Beginning	Discovered	Constanting of the second
G	3	2	1	2	6,148,171,711,663	Johnson, 2011	🥚 Found with mistakes 👘
1	8	1	1	7	192,252,423,729,713	Martin, 2016	Only first point found

- New zones were discovered quite rarely
- The range beyond 10¹² was beyond the technical capabilities for a long time
- Both Johnson and Martin were programmers, not mathematicians
- *"Practice Is the Sole Criterion of Truth":* no theoretical model would ever disprove the numerically confirmed $\Delta_{q,a,b}$ sign-changing zones
- Direct numerical calculations for $\Delta_{q,a,b}$ sign-changing zones have absolute accuracy

In 20+ years since 1996 there have been only two sign-changing zones found, although with incomplete or inaccurate information.

LOGARITHMIC DENSITY/PROBABILITY OF $\pi_{4,3}(x) > \pi_{4,1}(x)$

Theorem (Rubinstein and Sarnak, 1994). As $X \rightarrow \infty$,

$$\frac{1}{\log X} \sum_{\substack{x \leq X \\ \pi_{4,3}(x) > \pi_{4,1}(x)}} \frac{1}{x} \to 0.9959 \dots$$

In other words, Chebyshev was right 99.59% of the time!

Theorem (Rubinstein and Sarnak, 1994) Let (a;q) = (b;q) = 1 such that $a \neq b \mod q$. The logarithmic density

$$\delta(q; a, b) \coloneqq \lim_{X \to \infty} \frac{1}{\log X} \int_{\substack{t \in [2, X] \\ \pi(t; q, a) > \pi(t; q, b)}} \frac{d}{t}$$

exists and is positive.

In 1994 the existence of positive logarithmic density, for Δ , meaning "the probability that $\pi_{q,a}(x) > \pi_{q,b}(x)$ " was proved.

THE MOST "UNFAIR PRIME NUMBER RACES" *The "most unfair prime number races" (Fiorilli & Martin) & status (2013)*

	Coll Number	201 X 1 Z			A. JUNNER AUDAR		In a support of the second sec
1	#	q	b	a	δ(q;a,1)	Status (2013)	• Fundamental 2013
A	1	24	1	5	0.999988	Not found up to 10 ¹²	<i>research</i> by Fiorilli and
R	2	24	1	11	0.999983	Not found up to 10 ¹²	<i>Martin on logarithmic</i>
	3	12	1	11	0.999977	Not found up to 10 ¹²	densities
ĮQ	4	24	1	23	0.999889	Not found up to 10 ¹²	• Logarithmic densities
now	5	24	1	7	0.999834	Not found up to 10 ¹²	were calculated and
Ć	6	24	1	19	0.999719	Not found up to 10 ¹²	ranked for 120 top
	7	8	1	3	0.999569	Not found up to 10 ¹²	<i>"prime number races"</i>
	8	12	1	5	0.999206	Not found up to 10 ¹²	a set and the short ATA - A more and I'll
1	9	24	1	17	0.999125	Not found up to 10 ¹²	• Top 15 were selected
	10	3	1	2	0.999063	Known up to 10 ¹²	<i>for test</i> within the scope
	11	8	1	7	0.998939	Not found up to 10 ¹²	<i>of this project</i>
	12	24	1	13	0.998722	Known up to 10 ¹²	Not defined exactly
The state	13	12	1	7	0.998606	Not found up to 10 ¹²	The first of the second
TA	14	8	1	5	0.997395	Known up to 10 ¹²	Contraction of the second seco
A	15	4	1	3	0.995928	Known up to 10 ¹²	

In 2013 the most "unfair prime number races" were theoretically defined, 15 of which were selected for this project up to 10¹⁵.

PREDICTIONS OF NEW ZONES: q = 3, 4 & 8

Predictions of possible $\Delta_{q,a,b}(x)$ sign-changing zones up to 10^{20}

q	#	b	a	Beginning	Made by	A Contractor
q=3	2	1	2	6.15*10 ¹²	Bays & Hudson, 2001	CHECK!
q=3	3	1	2	3.97*10 ¹⁹	Bays & Hudson, 2001	201207
q=3	3	1	2	3.97*10 ¹⁹	Ford & Hudson, 2001	HE HOLD
q=4	8	1	3	9.32*10 ¹²	Bays & Hudson, 2001	CHECK!
[™] q=4	9	1	3	9.97*10 ¹⁷	Deléglise, Dusart & Roblot, 2004	
q=8	1	1	3	6.82*10 ¹⁸	Ford & Hudson, 2001	PHAREA
q=8	1	1	5	$1.93*10^{14}$	Ford & Hudson, 2001	CHECK!
q=8	2	1	5	9.32*10 ¹⁴	Ford & Hudson, 2001	CHECK!
q=8	1	1	7	$1.93*10^{14}$	Bays & Hudson, 2001	CHECK!
q=8	1	1	7	$1.93*10^{14}$	Ford & Hudson, 2001	CHECK!

• One of the main goals of the project was to check the predictions for new sign-changing zones made in the beginning of 2000s

- Some predictions (>10¹⁸) were located far beyond the technical capabilities of that time
- Even today working above 10¹⁸ requires the use of supercomputers with many cores and efficient multi-threading

For q = 3, 4 and 8 the existence of six Δ sign-changing zones were predicted up to the 10^{15} – the upper boundary of the project.

PREDICTIONS OF NEW ZONES: q = 12 & 24

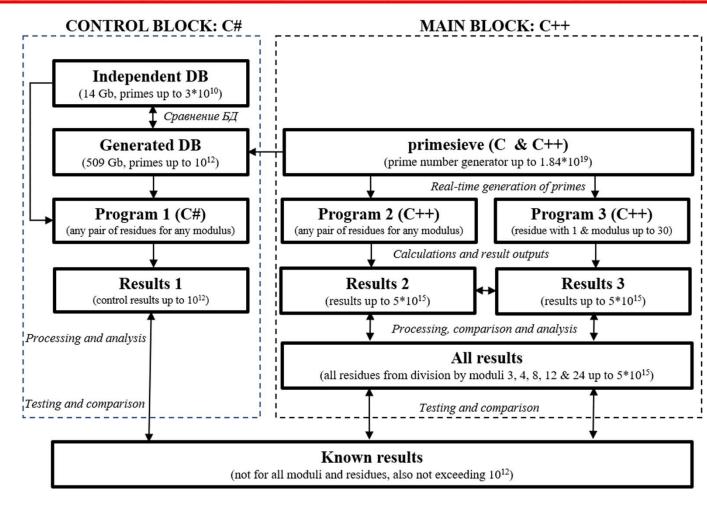
Predictions of possible $\Delta_{q,a,b}(x)$ sign-changing zones up to 10^{20}

q	#	b	a	Beginning	Predicted by
q=12	1	1	5	9.84*10 ¹⁶	Ford & Hudson, 2001
q=12	1	1	7	9.78*10 ¹⁶	Ford & Hudson, 2001
q=12	1	1	11	None < 10 ²⁰	Ford & Hudson, 2001
q=24	1	1	5	None < 10 ²⁰	Ford & Hudson, 2001
q=24	1	1	7	None < 10 ²⁰	Ford & Hudson, 2001
q=24	1	1	11	None < 10 ²⁰	Ford & Hudson, 2001
q=24	1	1	13	$6.74*10^{14}$	Ford & Hudson, 2001
q=24	1	1	17	6.18*10 ¹⁴	Ford & Hudson, 2001
q=24	2	1	17	7.11*10 ¹⁴	Ford & Hudson, 2001
q=24	1	1	19	7.15*10 ¹⁴	Ford & Hudson, 2001
q=24	1	1	23	7.44*10 ¹⁸	Ford & Hudson, 2001

• One of the main goals of the project was to check the predictions for new sign-changing zones made in the beginning of 2000s

 The situation with q = 12 and 24 was similar: some predictions (>10¹⁸) were located far beyond the technical capabilities of that time

CHECK


For q = 12 and 24 the existence of four Δ sign-changing zones were predicted up to the 10^{15} – the upper boundary of the project.

TECHNICAL DIFFICULTIES

- Ranges above 10¹⁵ seemed incredibly high 17 years ago (in 2001) when Bays & Hudson summarized their 25-year effort in Chebyshev's Bias area
- The direct brute-force method was extremely resource-consuming as well as sensitive to non-stop execution
- Fast and reliable prime number generators that were capable of working with large primes above 10¹² and generate them without omissions and mistakes were absent
- The alternative way of getting primes the preliminary generation with further database storage, required enormous memory size (hundreds of terabytes or even petabytes) and barely allowed to move above 10¹² leaving alone 10¹⁵ up
- Fast and affordable servers capable to work without mistakes and non-stop 24
 x 7 for many weeks and months were required
- Many predicted points were located around 10¹⁸ far above 10¹⁵, that also reduced substantially the desire for implementation
- To work above 10¹⁸ fast supercomputers with many cores and efficient multithreading were required

The direct brute force method to test Chebyshev's Bias even up to 10¹⁵ was difficult till recent advances in software and hardware development.

PROJECT TECHNICAL SET-UP

• 2 main C++ programs

- **Primes up to 1.8*10**¹⁹ (2⁶⁴) could be tested
- Control C# program with 10¹² database to check
- 4 consecutive ranges to test: 10¹³, 10¹⁴, 10¹⁵, 5*10¹⁵
- At least 2 passes for each range and "prime number race"
- Project was extended to 10¹⁶ in May of 2018
- 5*10¹⁵ was reached in August 2018
- Data double-checked till November 2018

Several C++ & C# programs were written for the project. The fastest known prime number generator "primesieve" was used for tests.

RESULTS: q = 3 (primes and values of n for primes)

Sign-changing zones for q = 3: primes

ĩ	q	N⁰	b	a	Beginning	End	$#\Delta = -1$	OEIS	-0.00	and the second sec
Y	q = 3	1	1	2	608,981,813,029	610,968,213,787	20,590	A297006		A S
	q = 3	2	1	2	6,148,171,711,663	6,156,051,951,677	63,733	A297006	NEW!	(v) 6.15*10 ¹²
R AVO	Total	2	1	2			84,323	A297006		

Sign-changing zones for q = 3: values of n for primes ($\pi(x)$ function)

- March	q	№	b	a	Beginning	End	$#\Delta = -1$	OEIS	Act a longer
	q = 3	1	1	2	23,338,590,792	23,411,791,034	20,590	A297005	
	q = 3	2	1	2	216,415,270,060	216,682,882,512	63,733	A297005	NEW!
A DAR	Total	2	1	2			84,323	A297005	2 M

Second zone matched exactly with that predicted by Bays & Hudson (2001) at 6.15*10¹²

• New A297006 and A297005 sequences were registered with OEIS

For q = 3 the $2^{nd} \Delta$ sign-changing zone was found that almost exactly matched a zone predicted back in 2001.

RESULTS: q = **4** (**primes**) Sign-changing zones for *q* = 4: primes

		1000	1.	1/2 / spynestics della Party - and	CONTRACTOR AND A CONTRACT OF A DESCRIPTION OF A DESCRIPA DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A	21 N Z 1766	26 N	
q	N⁰	b	a	Beginning	End	# ∆= -1	OEIS	2
q = 4	1	1	3	26,861	26,861	1	A051025	
q = 4	2	1	3	616,841	633,797	90	A051025	3
q = 4	3	1	3	12,306,137	12,382,313	150	A051025	Ð
q = 4	4	1	3	951,784,481	952,223,473	396	A051025	7
q = 4	5	1	3	6,309,280,709	6,403,150,189	6,205	A051025	Ň
q = 4	6	1	3	18,465,126,293	19,033,524,533	6,524	A051025	
q = 4	7	1	3	1,488,478,427,089	1,494,617,929,603	14,189	A051025	K
q = 4	8	1	3	9,103,362,505,801	9,543,313,015,309	391,378	A051025	
q = 4	9	1	3	64,083,080,712,569	64,084,318,523,021	13,370	A051025	
q = 4	10	1	3	715,725,135,905,981	732,156,384,107,921	481,194	A051025	
Total	10	1	3			913,497	A051025	

The 8th zone happened lower than was predicted by Bays & Hudson (2001) at 9.32*10¹²

- The 9th & 10th zones were not expected up to 10¹⁸
- **OEIS sequence** A051025 with only 30 terms was complemented and now includes 913,497 terms

For q = 4 three new zones (8th, 9th & 10th) were discovered. According to the theoretical models the last two had not been expected below10¹⁸.

9.32*1012

9.97*10¹⁷

RESULTS: q = 4 (values of n for primes) Sign-changing zones for q = 4: values of n for primes ($\pi(x)$ function)

1.25	q	N⁰	b	a	Beginning	End	$#\Delta = -1$	OEIS	
	q = 4	1	1	3	2,946	2,946	1	A051024	-
A	q = 4	2	1	3	50,378	51,622	90	A051024	5
	q = 4	3	1	3	806,808	811,528	150	A051024	
2	q = 4	4	1	3	48,517,584	48,538,970	396	A051024	
ų.	q = 4	5	1	3	293,267,470	297,424,714	6,205	A051024	
ł	q = 4	6	1	3	817,388,828	841,415,718	6,524	A051024	1 March
į	q = 4	7	1	3	55,152,203,450	55,371,233,730	14,189	A051024	
į	q = 4	8	1	3	316,064,952,540	330,797,040,308	391,378	A051024	100 3
ŝ	q = 4	9	1	3	2,083,576,475,506	2,083,615,410,040	13,370	A051024	SA 11
Ę	q = 4	10	1	3	21,576,098,946,648	22,056,324,317,296	481,194	A051024	100
3	Total	10	1	3			913,497	A051024	8

- The 8th zone happened lower than was predicted by Bays & Hudson (2001)
- The 9th and 10th zone were not expected so low
- **OEIS sequence** A051024 with only 33 terms was complemented and now includes 913,497 terms

For q = 4 three new zones (8th, 9th & 10th) were discovered. According to the theoretical models the last two had not been expected below10¹⁸.

NEW

RESULTS: q = 8 (primes)

Sign-changing zones for q = 8: primes

14	q	N⁰	b	a	Beginning	End	$# \Delta = -1$	OEIS	Contraction of the second second
5	q = 8	1	1	3	Not found up to 5*10 ¹	15		2	a market and a start
ģ	q = 8	1	1	5	588,067,889	593,871,533	488	A297448	
h	q = 8	2	1	5	35,615,130,497	37,335,021,821	22,305	A297448	
1000	q = 8	3	1	5	5,267,226,902,633	5,312,932,515,721	109,831	A297448	NEW!
	q = 8	4	1	5	5,758,938,230,761	5,768,749,719,461	48,229	A297448	NEW!
3	q = 8	5	1	5	6,200,509,945,537	6,209,511,651,289	18,048	A297448	NEW!
2	q = 8	6	1	5	192,189,726,613,273	194,318,969,449,909	465,274	A297448	NEW! (V) 1.93*10 ¹⁴
1228	q = 8	7	1	5	930,525,161,507,057	932,080,335,660,277	186,057	A297448	NEW! (V) 9.32*10 ¹⁴
Ľ	Total	7	1	5			850,232	A297448	
2	q = 8	1	1	7	192,252,423,729,713	192,876,135,747,311	234,937	A295354	NEW! (V) 1.93*10 ¹⁴
3	Total	1	1	7			234,937	A295354	

• Not a single zone discovered for $\Delta_{8,3,1}(x)$

- Out of 5 discovered zones for ∆_{8,5,1}(x) only the 6th and 7th (2 widest ones) were predicted correctly at 1.93*10¹⁴ and 9.32*10¹⁴ respectively
- The 1st zone for $\Delta_{8,7,1}(x)$ was also predicted correctly at $1.93*10^{14}$

• 4 new sequences were registered: A297448, A297447, A295354 and A295353 Out of 5 new discovered zones for $\Delta_{8,5,1}(x)$ theoretical models correctly predicted only 2. The prediction for $\Delta_{8,7,1}(x)$ was also confirmed.

RESULTS: q = 8 (values of n for primes) Sign-changing zones for q = 8: values of n for primes ($\pi(x)$ function)

1	q	N⁰	b	a	Beginning	End	$#\Delta = -1$ OEIS	
	q = 8	1	1	3	Not found up to 5*10 ¹	15		a Markin Kor
í.	q = 8	1	1	5	30,733,704	31,021,248	488 A2974	147
	q = 8	2	1	5	1,531,917,197	1,602,638,725	22,305 A2974	147
NOV.	q = 8	3	1	5	186,422,420,112	187,982,502,637	109,831 A2974	147 NEW!
	q = 8	4	1	5	203,182,722,672	203,516,651,165	48,229 A2974	147 NEW! ()
	q = 8	5	1	5	218,192,372,353	218,497,974,121	18,048 A2974	147 NEW!
	q = 8	6	1	5	6,033,099,205,868	6,097,827,689,926	465,274 A2974	147 NEW! V
	q = 8	7	1	5	27,830,993,289,634	27,876,113,171,315	186,057 A2974	147 NEW! V
2	Total	7	1	5			850,232 A2974	47 47 073
ž	q = 8	1	1	7	6,035,005,477,560	6,053,968,231,350	234,937 A2953	353 NEW! V
	Total	1	1	7			234,937 A2953	353

- Not a single zone discovered for $\Delta_{8,3,1}(x)$
- Out of 5 discovered zones for $\Delta_{8,5,1}(x)$ only the 6th and 7th (2 widest ones) were predicted correctly
- The 1^{st} zone for $\Delta_{8,7,1}(x)$ was also predicted correctly
- 4 new sequences were registered: A297448, A297447, A295354 and A295353

Out of 5 new discovered zones for $\Delta_{8,5,1}(x)$ theoretical models correctly predicted only 2. The prediction for $\Delta_{8,7,1}(x)$ was also confirmed.

RESULTS: q = 12 (primes and values of n for primes) Sign-changing zones for q = 12: primes

	Carrier and a second	1.10		1.0	2	The second secon		I P BATERYS ADD.	
TAR.	q	N⁰	b	a	Beginning	End	$#\Delta = -1$	OEIS	A State of the second of the s
h	q = 12	1	1	5	25,726,067,172,577	25,727,487,045,613	8,399	A297355	NEW! 9.84*10 ¹⁶
2	Total	1	1	5			8,399	A297355	
Ť	q = 12	1	1	7	27,489,101,529,529	27,555,497,263,753	55,596	A297357	NEW! 9.78*10 ¹⁶
Ţ	Total	1	1	7			55,596	A297357	WEELEN AND THE AND
R	a = 12	1	1	11	Not found up to 5*1	1015			A Children and A Chil

Sign-changing zones for q = 12: values of n for primes ($\pi(x)$ function)

	q	N⁰	b	a	Beginning	End	$# \Delta = -1$	OEIS	
S	q = 12	1	1	5	862,062,606,318	862,108,594,325	8,399	A297354	NEW!
The second	Total	1	1	5			8,399	A297354	10- 12- En a Alberta (1993) and
P	q = 12	1	1	7	919,096,512,484	921,242,027,614	55,596	A297356	NEW!
Ŧ	Total	1	1	7			55,596	A297356	3
2	q = 12	1	1	11	Not found up to 5 ⁴	*10 ¹⁵			N. To Xot

- Not a single zone discovered for $\Delta_{12,1,1}(x)$
- Discovered zone for $\Delta_{12,5,1}(x)$ happened to be narrow and lower than predicted at $9.84*10^{16}$
- Discovered zone for $\Delta_{12,7,1}(x)$ happened to be narrow and lower than predicted at $9.78*10^{16}$

• Four new OEIS sequences were registered A297355, A297354, A297357 and A297356

In 5*10¹⁵ range theoretical models failed to predict both discovered zones unknown before. This requires explanation and change in the models!

RESULTS: q = 24 (primes) Sign-changing zones for q = 24: primes

12	Sign C		.9	10	somes joi q 21	·primes	The Lard	八日間の人で19	The work is the the total the
	q	N⁰	b	a	Beginning	End	$# \Delta = -1$	OEIS	Others and a set
73	q = 24	1	1	5	Not found up to 5*10	15			The office of the state of the
A	q = 24	1	1	7	Not found up to 5*10	15			
Ľ	q = 24	1	1	11	Not found up to 5*10	15			
1	q = 24	1	1	13	978,412,359,121	989,462,029,561	9,920	A295356	VIS A VADOT
ų	q = 24	2	1	13	1,005,578,970,337	1,009,517,096,641	22,648	A295356	NEW!
	q = 24	3	1	13	1,025,403,695,233	1,096,157,101,033	111,408	A295356	NEW!
	q = 24	4	1	13	648,452,989,927,609	649,632,972,248,893	202,195	A295356	NEW!
	q = 24	5	1	13	655,404,854,710,621	662,189,414,787,361	594,414	A295356	NEW! NEW! 0 6.74*10 ¹⁴
	q = 24	6	1	13	687,936,222,802,693	699,914,738,212,849	1,441,319	A295356	NEW! (V) (0.77 10
	Total	6	1	13			2,381,904	A295356	
	q = 24	1	1	17	617,139,273,158,713	618,051,990,355,993	73,201	A297450	NEW! (V) 6.18*10 ¹⁴
X	q = 24	2	1	17	709,763,768,223,841	714,186,411,923,009	773,982	A297450	NEW! (V) 7.11*10 ¹⁴
	q = 24	3	1	17	772,451,788,864,537	772,739,867,710,897	116,739	A297450	NEW!
iūt	Total	3	1	17			963,922	A297450	# 0 0 1 2 9 45 1 70 2 5 M
	q = 24	1	1	19	706,866,045,116,113	709,591,447,226,587	260,586	A298821	NEW!
	q = 24	2	1	19	716,328,072,795,619	725,993,117,452,657	833,790	A298821	NEW! V 7.15*10 ¹⁴
1.0	q = 24	3	1	19	731,496,205,367,611	733,085,386,984,849	306,557	A298821	NEW!
	q = 24	4	1	19	739,965,838,936,153	756,906,118,578,763	1,586,533	A298821	NEW!
6	q = 24	5	1	19	761,403,326,459,539	766,164,822,666,883	449,524	A298821	NEW!
4	Total	5	1	19			3,436,990	A298821	The Start But of the Start
5	q = 24	1	1	23	Not found up to 5*10	15			10423.60

 Six new OEIS sequences were registered A295356, A295355, A297450, A297449, A298821 and A298820

For q = 24 13 new zones were discovered for $\Delta_{24,13,1}(x)$, $\Delta_{24,17,1}(x)$ and $\Delta_{24,19,1}(x)$. None were found for $\Delta_{24,5,1}(x)$, $\Delta_{24,7,1}(x)$, $\Delta_{24,11,1}(x)$ & $\Delta_{24,23,1}(x)$.

	N⁰	b	a	Beginning	End	$#\Delta = -1$	OEIS	* Com
24	1	1	5	Not found up to 5*10 ¹⁵	5			
24	1	1	7	Not found up to 5*10 ¹⁵	5			()
24	1	1	11	Not found up to 5*10 ¹⁵	;			已合并
24	1	1	13	36,826,322,708	37,226,458,011	9,920	A295355	ALL TREE TO A
24	2	1	13	37,809,796,159	37,952,282,986	22,648	A295355	NEW!
24	3	1	13	38,526,874,563	41,082,097,577	111,408	A295355	NEW!
24	4	1	13	19,606,529,038,612	19,641,125,979,304	202,195	A295355	NEW!
24	5	1	13	19,810,330,673,460	20,009,166,153,467	594,414	A295355	NEW!
24	6	1	13	20,763,192,869,094	21,113,714,560,133	1,441,319	A295355	NEW!
al	6	1	13			2,381,904	A295355	T. T.
24	1	1	17	18,687,728,175,380	18,714,528,041,257	73,201	A297449	NEW!
24	2	1	17	21,401,790,499,965	21,531,111,289,460	773,982	A297449	NEW!
24	3	1	17	23,232,693,876,716	23,241,097,440,243	116,739	A297449	NEW!
al	3	1	17			963,922	A297449	8 8 V
24	1	1	19	21,317,046,795,798	21,396,751,256,986	260,586	A298820	NEW!
24	2	1	19	21,593,726,305,432	21,876,231,682,201	833,790	A298820	NEW!
24	3	1	19	22,037,035,819,978	22,083,466,138,743	306,557	A298820	NEW!
24	4	1	19	22,284,455,265,595	22,779,076,769,443	1,586,533	A298820	NEW!
24	5	1	19	22,910,331,360,479	23,049,274,819,456	449,524	A298820	NEW!
al	5	1	19			3,436,990	A298820	the de

26

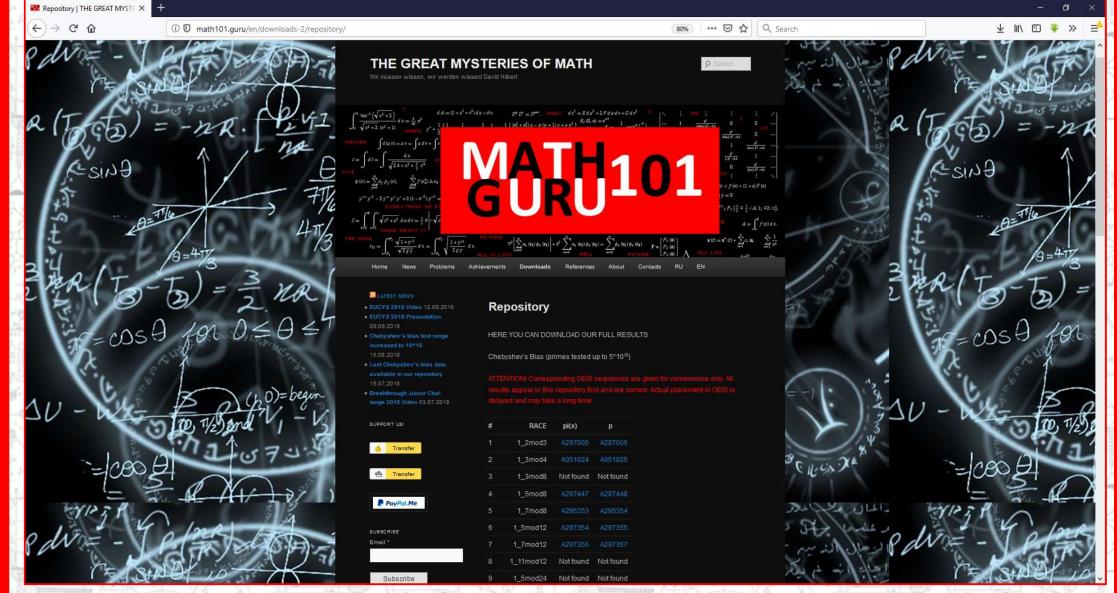
1 1 23 Not found up to 5*10¹⁵

• 6 sequences registered A295356, A295355, A297450, A297449, A298821 & A298820 For q = 24 13 new zones were discovered for $\Delta_{24,13,1}(x)$, $\Delta_{24,17,1}(x)$ and $\Delta_{24,19,1}(x)$. None were found for $\Delta_{24,5,1}(x)$, $\Delta_{24,7,1}(x)$, $\Delta_{24,11,1}(x)$ & $\Delta_{24,23,1}(x)$.

RESULTS The most "unfair prime number races" – the largest $\delta(q;a,1)$ and status as of 2018

#	q	b	a	δ(q;a,1)	Status (2018)	2013	2018	Rillarus dona and
1	24	1	5	0.999988	Not found up to $5*10^{15}$ (2018)			Mar Other Bread
2	24	1	11	0.999983	Not found up to $5*10^{15} (2018)$			Charles the
3	12	1	11	0.999977	Not found up to $5*10^{15}$ (2018)			
4	24	1	23	0.999889	Not found up to $5*10^{15} (2018)$		2 💽	in the second second
5	24	1	7	0.999834	Not found up to $5*10^{15} (2018)$			(開合)開切,公社
6	24	1	19	0.999719	Found up to 5*10 ¹⁵ (2018)			5 NEW ZONES
. 7	8	1	3	0.999569	Not found up to $5*10^{15}$ (2018)		3 0 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8	12	1	5	0.999206	Found up to 5*10 ¹⁵ (2018)			1 NEW ZONE
9	24	1	17	0.999125	Found up to 5*10 ¹⁵ (2018)		-	3 NEW ZONES
10	3	1	2	0.999063	Known up to 5*10 ¹⁵ (2018)			1 NEW ZONE
11	8	1	7	0.998939	Found up to 5*10 ¹⁵ (2018)	- +	- * • · · · · · · · · · · · · · · · · · ·	1 NEW ZONE
12	24	1	13	0.998722	Known up to 5*10 ¹⁵ (2018)		-	5 NEW ZONES
13	12	1	7	0.998606	Found up to $5*10^{15}$ (2018)	- +		1 NEW ZONE
14	8	1	5	0.997395	Known up to 5*10 ¹⁵ (2018)	647-0-64		5 NEW ZONES
15	4	1	3	0.995928	Known up to 5*10 ¹⁵ (2018)			3 NEW ZONES

- **Discovered 4 first ever zones** $(\Delta_{12,5,1}(x), \Delta_{12,7,1}(x), \Delta_{24,17,1}(x), \Delta_{24,19,1}(x))$ for 4 out of 15 most interesting and "unfair prime number races"
- In total 25 new $\Delta_{q,a,b}(x)$ sign-changing zones discovered
- In total 18 sequences were registered or substantially extended with OEIS
- Sign-changing zones for only 6 "most unfair prime number races" remain unknown


Project implementation allowed to advance substantially in search for Δ **sign-changing zones for the most interested "prime number races".**

RESULTS: PUBLISHED DATA

All data were published in The Online Encyclopedia of Integer Sequences (OEIS) as 18 separate sequences.

RESULTS: PUBLISHED DATA

All results are available at project repository at www.math101.guru (<u>http://math101.guru/en/downloads-2/repository/</u>).

RESULTS: CONCLUSIONS

- Chebyshev's Bias was tested up to 5*10¹⁵ for selected 15 "most biased prime number races", established theoretically in 2013
- First sign-changing zones were discovered for 4 "most biased prime number races" out of selected 15 (6 still remain unknown)
- In total, 25 new sign-changing zones for delta were found
- It was confirmed that theoretical models fail to predict small and narrow zones that occur more frequently than assumed
- It was confirmed that theoretical models predict big and wide zones relatively well
- 18 sequences were registered or substantially extended with OEIS
- All zones were accurately and exactly defined (beginning, end, number of terms)
- Full and complete data are available to everybody
- Created software allows to test Chebyshev's Bias up to 2⁶⁴ (1.8*10¹⁹)
- *The article is under work for submission to* «Mathematics of Computation»

Project implementation allowed to extend substantially our knowledge on Chebyshev's Bias and define the accuracy of theoretical models.