TESTING CHEBYSHEV'S BIAS FOR PRIME NUMBERS UP TO 5* $\mathbf{1 0}^{15}$

Andrey Sergeevich SHCHEBETOV
Lomonosovskaya School
Moscow, Russia

Presentation for The Intel International Science and Engineering Fair
Intel ISEF 2019
Phoenix, Arizona
May 12-17, 2019

GOALS AND TARGETS FOR THE PROJECT

- To test Chebyshev's Bias for 15 "most biased prime number races"
- To extend the range tested by mathematicians 5000 times to $5 * 10^{15}$ $\left(5 * 10^{15}\right.$ - the upper bound and the last number of the tested range)
- To define exactly the main characteristics of all sign-changing zones (known, as well as newly found), including their beginning, end and number of terms
- To check newly discovered zones against predictions
- To test and confirm all previously known sign-changing zones for $\Delta_{q, a, b}(x)$ up to 10^{12}
- To make all primary data available to a wide group of mathematicians working in number theory field through OEIS publication and deposit in author's own repository
- To define all data in a uniform way and with unified format

The main goal of the project was to test Chebyshev's Bias for 15 selected moduli and pairs of residues for prime numbers up to $5 * 10^{15}$.

LETTER FROM CHEBYSHEV TO FUSS (1853)

СОчиненІя
І. Л. पЕБЫШIIEВА,

- 698 -

Chebyshev's Bias (Chebyshev, 1853). "There is a notable difference in the splitting of the prime numbers between the two forms $4 n+3,4 n+1$: the first form contains a lot more than the second."

In 1853 Chebyshev suggested that there are always more primes of the form $4 n+3$ than primes of the form $-4 n+1$.

CHEBYSHEV'S BIAS FOR TWO RESIDUES

$\pi(x)=\pi_{4,3}(x)+\pi_{4,1}(x)+1$
$\Delta_{4,3,1}(x)=\pi_{4,3}(x)-\pi_{4,1}(x)$
$\pi(x)$ - prime counting function
$q=4$-modulus
$a=3$ and $b=1$-residues
$(a, q)=1,(b, q)=1$

Chebyshev's Bias(1853): $\Delta_{4,3,1}(x)>0$ for all x

- Initial conjecture for $q=4, a=3, b=1$
- Similar situation for $q=3, a=2, b=1$
- «Prime number races»

Chebyshev's Bias is easily formulated through prime counting function for two residues a and b modulo q.

CHEBYSHEV'S BIAS EXAMPLE FOR TWO RESIDUES MOD 4

x	$\pi(\mathrm{x})$	$\#\{4 n+2\}$	\# $\{4 \mathrm{n}+3$ \}	$\#\{4 n+1\}$	$\Delta\{4,3,1\}$	\%
100	25	1	13	11	2	2.000\%
200	46	1	24	21	3	1.500\%
300	62	1	32	29	3	1.000\%
400	78	1	40	37	3	0.750\%
500	95	1	50	44	6	1.200\%
600	109	1	57	51	6	1.000\%
700	125	1	65	59	6	0.857\%
800	139	1	71	67	4	0.500\%
900	154	1	79	74	5	0.556\%
1000	168	1	87	80	7	0.700\%
2000	303	1	155	147	8	0.400\%
3000	430	1	218	211	7	0.233\%
4000	550	1	280	269	11	0.275\%
5000	669	1	339	329	10	0.200\%
6000	783	1	399	383	16	0.267\%
7000	900	1	457	442	15	0.214\%
8000	1007	1	507	499	8	0.100\%
9000	1117	1	562	554	8	0.089\%
10,000	1229	1	619	609	10	0.100\%
20,000	2262	1	1136	1125	11	0.055\%

- The phenomena is small, but permanent
- Effective percentage has tendency to decrease
- At Chebyshev's times and 100 years after no negative zones for $\Delta_{4,3,1}$ were known
- Only in 1957 the first and the second zones were discovered

The first and second zones where Chebyshev's Bias was violated were discovered only in 1957-more than 100 years after the letter to Fuss.

MAIN WORKS IN CHEBYSHEV'S BIAS AREA

1853 Letter from P.L. Chebyshev to P.N. Fuss
1914 J. E. Littlewood, «Sur la distribution des nombres premiers»
1957 J. Leech, «Note on the distribution of prime numbers»
1959 D. Shanks "Quadratic Residues and the Distribution of Primes»
1962 S. Knapowski and P. Turán, «Comparative Prime-Number Theory"
1978 C. Bays u R. Hudson, «Details of the first region of integers x with $\pi\{3,2\}(x)<\pi\{3,1\}(x)$ »
1978 R. H. Hudson u C. Bays, «The appearance of tens of billion of integers x with $\pi\{24,13\}(x)<\pi\{24,1\}(x)$ in the vicinity of $10^{\wedge} 12$ »
1979 C. Bays u R. H. Hudson, «Numerical and graphical description of all axis crossing regions for the moduli 4 and 8 which occur before 10^12"
1994 M. Rubinstein u P. Sarnak, «Chebyshev's Bias"
2001 C. Bays, K. Ford, R. H. Hudson u M. Rubinstein, «Zeros of Dirichlet L-functions near the Real Axis and Chebyshev's Bias»
2001 K. Ford u R. H. Hudson, «Sign changes in pi\{q;a\}(x) - pi\{q;b\}(x)»
2006 A. Granville u G. Martin, «Prime Number Races»
2012 G. Martin u J. Scarfy, "Comparative Prime Number Theory"
2013 D. Fiorilli u G. Martin, «Inequities in the Shanks-Renyi prime number race: an asymptotic formula for the densities"
"Chebyshev's conjecture was the origin for a big branch of modern Number Theory, namely, comparative prime-number theory» as was written by S.V. Konyagin (Russia) and K. Ford (USA) in a joint paper.

CHEBYSHEV'S BIAS AND OTHER THEOREMS

Dirichlet prime number theorem for arithmetic progression (Dirichlet, 1837). Let a, q $\in Z^{+}$be such that $\operatorname{gcd}(a, q)=1$. Then there are infinitely many prime numbers p such that $p \equiv a(\bmod q)$. Therefore, as a result:

$$
\frac{\#\{\text { primes } q n+a \leq x\}}{\#\{\text { primes } q n+b \leq x\}} \rightarrow 1(a s x \rightarrow \infty)
$$

Theorem (Littlewood, 1914). There are arbitrarily large values of x for which there are more primes of the form $4 n+1$ up to x than primes of the form $4 n+3$. In fact, there are arbitrarily large values of x for which:

$$
\#\{\text { primes } 4 n+1 \leq x\}-\#\{\text { primes } 4 n+3 \leq x\} \geq \frac{1}{2} \frac{\sqrt{x}}{\ln x} \ln \ln \ln x
$$

Conjecture (Knapowski and Turán, 1962). As $X \rightarrow \infty$, the percentage of integers $x \leq X$ for which there are more primes of the form $4 n+3$ up to x than of the form $4 n+1$ goes to 100%.

Theorem (Kaczorowski, Rubinstein-Sarnak, 1994). If the Generalized Riemann Hypothesis GRH is true, then the Knapowski-Turán Conjecture is false.

The connection between Chebyshev's Bias and Generalized Riemann Hypothesis (GRH) was proven in 1994.

CHEBYSHEV'S BIAS AND OTHER THEOREMS

Generalized Riemann Hypothesis (GRH) (Piltz, 1884): For any χ mod q and all complex $s=\sigma+$ it such as $0 \leq \sigma \leq 1$ and $L(\sigma+i t, \chi)=0$, all the non-trivial zeroes of the
Dirichlet L-function $L(s, \chi)(\operatorname{Re}(s)>1)$ lie on the straight line $\operatorname{Re}(s)=1 / 2$.

$$
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}=\prod_{\text {pprimes }}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1}
$$

Dirichlet L-function for "race of primes $4 n+3 v s$. primes $4 n+1$ " $(\operatorname{Re}(\mathrm{s})>1)$:

$$
L(s)=\frac{1}{1^{s}}-\frac{1}{3^{s}}+\frac{1}{5^{s}}-\frac{1}{7^{s}}+\frac{1}{9^{s}}-\frac{1}{11^{s}}+\cdots
$$

Therefore, the sum over primes in arithmetic progression is equivalent to the sum over zeros of Dirichlet L-function.
Rubinstein and Sarnak (1994): The sum over primes in arithmetic progressions results into:

$$
\sum_{k \geq 1} \sum_{\substack{k \leq x \\ p^{k} \equiv a \bmod q}} \frac{1}{k}=\pi(x ; q, a)+\frac{1}{2}\left|\left\{p \leq \sqrt{x}: p^{2} \equiv a \bmod q\right\}\right|+\text { error }
$$

The second term in the formula is the source of Chebyshev's Bias.
Chebyshev's Bias (modern formulation): There are more primes of the form
$\boldsymbol{q} \boldsymbol{n}+\boldsymbol{a}$ than of the form $\boldsymbol{q} \boldsymbol{n}+\boldsymbol{b}$ if \boldsymbol{a} is non-square and \boldsymbol{b} is a square residue modulo \boldsymbol{q}.
The source and the origin of Chebyshev's Bias is the presence of the square residue b among residues modulo q.

DISPROVAL OF KNAPOWSKI-TURÁN CONJECTURE

Maximum percentage of values of $x \leq X$ for which $\pi_{4,1}(x)>\pi_{4,3}(x)$

- With exact formulation of Knapowski-Turán conjecture in 1962 the extensive search for $\Delta_{q, a, b}$ sign-changing zones started for various moduli and residues
- It became clear that Knapowski-Turán conjecture was false after a number breakthrough works and papers of C. Bays and R.H. Hudson (USA) who discovered several new sign-changing zones for $\Delta_{4,3,1}$ between 1979 and 1996

Empirical data supported Knapowski-Turán conjecture up to 10^{9} only. After Bays and Hudson research it became clear that it was wrong.

EMPIRICAL RESULTS: 1957-1996 ($q=3,4 \& 8$)
Status of $\Delta_{q, a, b}(x)$ sign-changing zones search from 1957 to 1996

$\underline{1}$	\#	b	a	Beginning	Discovered
3	1	1	2	608,981,813,029	Bays \& Hudson, 1978
4	1	1	3	26,861	Leech, 1957
4	2	1	3	616,841	Leech, 1957
4	3	1	3	12,306,137	Lehmer, 1969
4	4	1	3	951,784,481	Lehmer, 1969
4	5	1	3	6,309,280,709	Bays \& Hudson, 1979
4	6	1	3	18,465,126,293	Bays \& Hudson, 1979
4	7	1	3	1,488,478,427,089	Bays \& Hudson, 1996
8	1	1	3	Not known up to $10{ }^{12}$	Not discovered
8	1	1	5	588,067,889	Bays \& Hudson, 1979
8	2	1	5	35,615,130,497	Bays \& Hudson, 1979
8	1	1	7	Not known up to $10{ }^{12}$	Not discovered

- The search for new zones had been very slow - sometimes decades passed between the discoveries
- Several outstanding mathematicians such as J. Leech ("Leech lattice"), D.H. Lehmer ("Lucas-Lehmer primality test") and C. Bays \& R.H. Hudson (prime number research and estimates for "Skewes number") contributed greatly to the search
- Most sign-changing zones (7) were found for $\boldsymbol{4}_{4,3,1}$

There had been extensive search for 4 sign-changing zones up to 10^{12} from 1957 to 1996.

EMPIRICAL RESULTS: 1957-1996 ($q=12$ \& 24)
Status of $\Delta_{q, a, b}(x)$ sign-changing zones search from 1957 to 1996

q	\#	b	a	Beginning	Discovered	
12	1	1	5	Not known up to 10^{12}	Not discovered	
12	1	1	7	Not known up to 10^{12}	Not discovered	
12	1	1	11	Not known up to 10^{12}	Not discovered	
24	1	1	5	Not known up to 10^{12}	Not discovered	
24	1	1	7	Not known up to 10^{12}	Not discovered	
24	1	1	11	Not known up to 10^{12}	Not discovered	
24	1	1	13	«Around 10^{12} 》	Bays \& Hudson, 1978	Not defined exactly
24	1	1	17	Not known up to 10^{12}	Not discovered	
24	1	1	19	Not known up to 10^{12}	Not discovered	
24	1	1	23	Not known up to 10^{12}	Not discovered	

- Apart from $\Delta_{24,13,1}$ there had been no other found Δ sign-changing zones for $q=12$ \& 24
- For $\Delta_{24,13,1}$ the first zone was defined only approximately without exact boundaries and number of terms

Mod 12 and 24 presented a major problem as there had been almost nothing discovered and known about them.

EMPIRICAL RESULTS: 1996-2016

Status of $\Delta q, a, b(x)$ sign-changing zones search from 1996 to 2016

q	$\#$	b	a	Beginning	Discovered	
$\mathbf{3}$	2	1	2	$6,148,171,711,663$	Johnson, 2011	Found with mistakes
$\mathbf{8}$	1	1	7	$192,252,423,729,713$	Martin, 2016	Only first point found

- New zones were discovered quite rarely
- The range beyond 10^{12} was beyond the technical capabilities for a long time
- Both Johnson and Martin were programmers, not mathematicians
- "Practice Is the Sole Criterion of Truth": no theoretical model would ever disprove the numerically confirmed $\Delta_{q, a, b}$ sign-changing zones
- Direct numerical calculations for $\Delta_{q, a, b}$ sign-changing zones have absolute accuracy

In 20+ years since 1996 there have been only two sign-changing zones found, although with incomplete or inaccurate information.

LOGARITHMIC DENSITY/PROBABILITY OF $\pi_{4,3}(x)>\pi_{4,1}(x)$

Theorem (Rubinstein and Sarnak, 1994). As $X \rightarrow \infty$,

$$
\frac{1}{\log X} \sum_{\substack{x \leq X \\ \pi_{4,3}(x)>\pi_{4,1}(x)}} \frac{1}{x} \rightarrow 0.9959 \ldots
$$

In other words, Chebyshev was right 99.59% of the time!

Theorem (Rubinstein and Sarnak, 1994) Let $(a ; q)=(b ; q)=1$ such that $a \neq b \bmod q$. The logarithmic density

$$
\delta(q ; a, b):=\lim _{X \rightarrow \infty} \frac{1}{\log X} \int_{\substack{t \in[2, X] \\ \pi(t ; q, a)>\pi(t ; q, b)}} \frac{d t}{t}
$$

exists and is positive.

In 1994 the existence of positive logarithmic density, for 4 , meaning "the probability that $\pi_{q, a}(x)>\pi_{q, b}(x)$ " was proved.

THE MOST "UNFAIR PRIME NUMBER RACES"

The "most unfair prime number races" (Fiorilli \& Martin) \& status (2013)

$\#$	q	b	a	$\delta(\mathrm{q}: \mathrm{a}, \mathbf{1})$	Status (2013)
$\mathbf{1}$	24	1	5	0.999988	Not found up to 10^{12}
$\mathbf{2}$	24	1	11	0.999983	Not found up to 10^{12}
$\mathbf{3}$	12	1	11	0.999977	Not found up to 10^{12}
$\mathbf{4}$	24	1	23	0.999889	Not found up to 10^{12}
$\mathbf{5}$	24	1	$\mathbf{7}$	0.999834	Not found up to 10^{12}
$\mathbf{6}$	24	1	19	0.999719	Not found up to 10^{12}
$\mathbf{7}$	8	1	3	0.999569	Not found up to 10^{12}
$\mathbf{8}$	12	1	5	0.999206	Not found up to 10^{12}
$\mathbf{9}$	24	1	17	0.999125	Not found up to 10^{12}
$\mathbf{1 0}$	3	1	2	0.999063	Known up to 10^{12}
$\mathbf{1 1}$	8	1	7	0.998939	Not found up to 10^{12}
$\mathbf{1 2}$	$\mathbf{2 4}$	1	13	0.998722	Known up to 10^{12}
$\mathbf{1 3}$	12	1	7	0.998606	Not found up to 10^{12}
$\mathbf{1 4}$	8	1	5	0.997395	Known up to 10^{12}
$\mathbf{1 5}$	$\mathbf{4}$	1	3	0.995928	Known up to 10^{12}

- Fundamental 2013 research by Fiorilli and Martin on logarithmic densities
- Logarithmic densities were calculated and ranked for 120 top "prime number races"
- Top 15 were selected for test within the scope of this project
Not defined exactly

In 2013 the most "unfair prime number races" were theoretically defined, 15 of which were selected for this project up to 10^{15}.

PREDICTIONS OF NEW ZONES: $q=3,4 \& 8$
Predictions of possible $\Delta_{q, a, b}(x)$ sign-changing zones up to 10^{20}

q.	\#	b	a	Beginning	Made by	
$\mathrm{q}=3$	2	1	2	$6.15 * 10^{12}$	Bays \& Hudson, 2001	Higck:
$\mathrm{q}=3$	3	1	2	$3.97 * 10^{19}$	Bays \& Hudson, 2001	
$\mathrm{q}=3$	3	1	2	$3.97 * 10^{19}$	Ford \& Hudson, 2001	
$\mathrm{q}=4$	8	1	3	$9.32 * 10^{12}$	Bays \& Hudson, 2001	нig
$\mathrm{q}=4$	9	1	3	$9.97 * 10^{17}$	Deléglise, Dusart \& Roblot, 2004	
$\mathrm{q}=8$	1	1	3	$6.82 * 10^{18}$	Ford \& Hudson, 2001	
$\mathrm{q}=8$	1	1	5	$1.93 * 10^{14}$	Ford \& Hudson, 2001	Hec
$\mathrm{g}=8$	2	1	5	$9.32 * 10^{14}$	Ford \& Hudson, 2001	ніс
$\mathrm{g}=8$	1	1	7	$1.93 * 10^{14}$	Bays \& Hudson, 2001	chirct
$\mathrm{g}=8$	1	1	7	$1.93 * 10^{14}$	Ford \& Hudson, 2001	Hiec

- One of the main goals of the project was to check the predictions for new sign-changing zones made in the beginning of 2000s
- Some predictions (>1018) were located far beyond the technical capabilities of that time
- Even today working above 10^{18} requires the use of supercomputers with many cores and efficient multi-threading

For $q=3,4$ and 8 the existence of six Δ sign-changing zones were predicted up to the 10^{15} - the upper boundary of the project.

PREDICTIONS OF NEW ZONES: $q=12 \& 24$
Predictions of possible $\Delta_{q, a, b}(x)$ sign-changing zones up to 10^{20}

\mathbf{q}	\#	\mathbf{b}	\mathbf{a}	Beginning	Predicted by	
$\mathbf{q}=\mathbf{1 2}$	1	1	5	$9.84^{*} 10^{16}$	Ford \& Hudson, 2001	
$\mathbf{q}=\mathbf{1 2}$	1	1	7	$9.78 * 10^{16}$	Ford \& Hudson, 2001	
$\mathbf{q}=\mathbf{1 2}$	1	1	11	None $<10^{20}$	Ford \& Hudson, 2001	
$\mathbf{q}=\mathbf{2 4}$	1	1	5	None $<10^{20}$	Ford \& Hudson, 2001	
$\mathbf{q}=\mathbf{2 4}$	1	1	7	None $<10^{20}$	Ford \& Hudson, 2001	
$\mathbf{q}=\mathbf{2 4}$	1	1	11	None $<10^{20}$	Ford \& Hudson, 2001	
$\mathbf{q}=\mathbf{2 4}$	1	1	13	$6.74 * 10^{14}$	Ford \& Hudson, 2001	
$\mathbf{q}=\mathbf{2 4}$	1	1	17	$6.18 * 10^{14}$	снгск!	
$\mathbf{q}=\mathbf{2 4}$	2	1	17	$7.11^{*} 10^{14}$	Ford \& Hudson, 2001	снеск!
$\mathbf{q}=\mathbf{2 4}$	1	1	19	$7.15^{*} 10^{14}$	Ford \& Hudson, 2001	снгск!
$\mathbf{q}=\mathbf{2 4}$	1	1	23	$7.44^{*} 10^{18}$	Ford \& Hudson, 2001	снгск!

- One of the main goals of the project was to check the predictions for new sign-changing zones made in the beginning of 2000 s
- The situation with $q=12$ and 24 was similar: some predictions ($>10^{18}$) were located far beyond the technical capabilities of that time

For $q=12$ and 24 the existence of four Δ sign-changing zones were predicted up to the 10^{15} - the upper boundary of the project.

TECHNICAL DIFFICULTIES

- Ranges above 10^{15} seemed incredibly high 17 years ago (in 2001) when Bays \& Hudson summarized their 25-year effort in Chebyshev's Bias area
- The direct brute-force method was extremely resource-consuming as well as sensitive to non-stop execution
- Fast and reliable prime number generators that were capable of working with large primes above 10^{12} and generate them without omissions and mistakes were absent
- The alternative way of getting primes - the preliminary generation with further database storage, required enormous memory size (hundreds of terabytes or even petabytes) and barely allowed to move above 10^{12} leaving alone $10^{15} \mathrm{up}$
- Fast and affordable servers capable to work without mistakes and non-stop 24 $\boldsymbol{x} 7$ for many weeks and months were required
- Many predicted points were located around 10^{18} - far above 10^{15}, that also reduced substantially the desire for implementation
- To work above 10^{18} fast supercomputers with many cores and efficient multithreading were required
The direct brute force method to test Chebyshev's Bias even up to 10^{15} was difficult till recent advances in software and hardware development.

PROJECT TECHNICAL SET-UP

- 2 main $C++$ programs
- Primes up to $1.8 * 10^{19}$ $\left(2^{64}\right)$ could be tested
- Control C\# program with 10^{12} database to check
- 4 consecutive ranges to test: $10^{13}, 10^{14}, 10^{15}$, $5 * 10^{15}$
- At least 2 passes for each range and "prime number race"
- Project was extended to 10^{16} in May of 2018
- $5 * 10^{15}$ was reached in August 2018
- Data double-checked till November 2018
Several C++ \& C\# programs were written for the project. The fastest known prime number generator "primesieve" was used for tests.

RESULTS: $\mathbf{q}=\mathbf{3}$ (primes and values of \mathbf{n} for primes)
Sign-changing zones for $q=3$: primes

q	№	b	a	Beginning	End	\# Δ = -1	OEIS		
$\mathrm{q}=3$	1	1	2	608,981,813,029	610,968,213,787	20,590	A297006		
$\mathrm{q}=3$	2	1	2	6,148,171,711,663	6,156,051,951,677	63,733	A297006	New:	(1) $6.15 * 10^{12}$
Total	2	1	2			84,323	A297006		-TA

Sign-changing zones for $q=3$: values of n for primes $(\pi(x)$ function)

q	№	b	a	Beginning	End	\# $\Delta=-1$	OEIS
$\mathrm{q}=3$	1	1	2	23,338,590,792	23,411,791,034	20,590	A297005
$\mathrm{q}=3$	2	1	2	216,415,270,060	216,682,882,512	63,733	A297005
Total	2	1	2			84,323	A297005

- Second zone matched exactly with that predicted by Bays \& Hudson (2001) at $6.15 * 10^{12}$
- New A297006 and A297005 sequences were registered with OEIS

For $q=3$ the $2^{\text {nd }} \Delta$ sign-changing zone was found that almost exactly matched a zone predicted back in 2001.

RESULTS: $q=4$ (primes)
Sign-changing zones for $q=4$: primes

- The $8^{\text {th }}$ zone happened lower than was predicted by Bays \& Hudson (2001) at $9.32 * 10^{12}$
- The $9^{\text {th }} \& 10^{\text {th }}$ zones were not expected up to 10^{18}
- OEIS sequence A051025 with only 30 terms was complemented and now includes 913,497 terms
For $q=4$ three new zones $\left(8^{\text {th }}, 9^{\text {th }} \& 10^{\text {th }}\right)$ were discovered. According to the theoretical models the last two had not been expected below10 ${ }^{18}$.

RESULTS: $\mathbf{q}=4$ (values of \mathbf{n} for primes)
Sign-changing zones for $q=4$: values of n for primes ($\pi(x)$ function)

q	№	b	a	Beginning	End	\# $\Delta=-1$	OEIS
$\mathrm{q}=4$	1	1	3	2,946	2,946	1	A051024
$\mathrm{q}=4$	2	1	3	50,378	51,622	90	A051024
$\mathrm{q}=4$	3	1	3	806,808	811,528	150	A051024
$\mathrm{q}=4$	4	1	3	48,517,584	48,538,970	396	A051024
$\mathrm{q}=4$	5	1	3	293,267,470	297,424,714	6,205	A051024
$\mathrm{q}=4$	6	1	3	817,388,828	841,415,718	6,524	A051024
$\mathrm{q}=4$	7	1	3	55,152,203,450	55,371,233,730	14,189	A051024
$\mathrm{q}=4$	8	1	3	316,064,952,540	330,797,040,308	391,378	A051024
$\mathrm{q}=4$	9	1	3	2,083,576,475,506	2,083,615,410,040	13,370	A051024
$\mathrm{q}=4$	10	1	3	21,576,098,946,648	22,056,324,317,296	481,194	A051024
Total	10	1	3			913,497	A051024

- The $8^{\text {th }}$ zone happened lower than was predicted by Bays \& Hudson (2001)
- The $9^{\text {th }}$ and $10^{\text {th }}$ zone were not expected so low
- OEIS sequence A051024 with only 33 terms was complemented and now includes 913,497 terms

For $q=4$ three new zones $\left(8^{\text {th }}, 9^{\text {th }} \& 10^{\text {th }}\right)$ were discovered. According to the theoretical models the last two had not been expected below1018.

RESULTS: $q=8$ (primes)
Sign-changing zones for $q=8$: primes

q	№	b	a	Beginning	End	\# $\Delta=-1$	OEIS		
$\mathrm{q}=8$	1	1	3	Not found up to $\mathbf{5 * ~}^{\mathbf{1 0}}{ }^{\mathbf{1 5}}$					
$\mathrm{q}=8$	1	1	5	588,067,889	593,871,533	488	A297448		
$\mathrm{q}=8$	2	1	5	35,615,130,497	37,335,021,821	22,305	A297448		
$\mathrm{q}=8$	3	1	5	5,267,226,902,633	5,312,932,515,721	109,831	A297448	NEw!	(1)
$\mathrm{q}=8$	4	1	5	5,758,938,230,761	5,768,749,719,461	48,229	A297448	NEW!	
$\mathrm{q}=8$	5	1	5	6,200,509,945,537	6,209,511,651,289	18,048	A297448	New:	(1)
$\mathrm{q}=8$	6	1	5	192,189,726,613,273	194,318,969,449,909	465,274	A297448	NEw!	(v) $1.93 * 10^{14}$
$\mathrm{q}=8$	7	1	5	930,525,161,507,057	932,080,335,660,277	186,057	A297448	New:	(v) $9.32 * 10^{14}$
Total	7	1	5			850,232	A297448		
$\mathrm{q}=8$	1	1	7	192,252,423,729,713	192,876,135,747,311	234,937	A295354	NEw!	(v) $1.93 * 10^{14}$
Total	1	1	7			234,937	A295354		

- Not a single zone discovered for $\Delta_{8,3,1}(x)$
- Out of 5 discovered zones for $\Delta_{8,5,1}(x)$ only the $6^{\text {th }}$ and $7^{\text {th }}$ (2 widest ones) were predicted correctly at $1.93 * 10^{14}$ and $9.32 * 10^{14}$ respectively
- The $1^{\text {st }}$ zone for $\Delta_{8,7,1}(x)$ was also predicted correctly at $1.93 * 10^{14}$
- 4 new sequences were registered: A297448, A297447, A295354 and A295353

Out of 5 new discovered zones for $\Delta_{8,5,1}(x)$ theoretical models correctly predicted only 2. The prediction for $\Delta_{8, \overline{7}, 1}(x)$ was also confirmed.

RESULTS: $\mathbf{q}=\mathbf{8}$ (values of \mathbf{n} for primes)
Sign-changing zones for $q=8$: values of n for primes $(\pi(x)$ function)

q	№	b	a	Beginning	End	\# $\Delta=-10 \mathrm{EIS}$	
$\mathrm{q}=8$	1	1	3	Not found up to 5*10			
$\mathrm{q}=8$	1	1	5	30,733,704	31,021,248	488 A297447	
$\mathrm{q}=8$	2	1	5	1,531,917,197	1,602,638,725	22,305 A297447	
$\mathrm{q}=8$	3	1	5	186,422,420,112	187,982,502,637	109,831 A297447	New!
$\mathrm{q}=8$	4	1	5	203,182,722,672	203,516,651,165	48,229 A297447	bw!
$\mathrm{q}=8$	5	1	5	218,192,372,353	218,497,974,121	18,048 A297447	NEw!
$\mathrm{q}=8$	6	1	5	6,033,099,205,868	6,097,827,689,926	465,274 A297447	New!
$\mathrm{q}=8$	7	1	5	27,830,993,289,634	27,876,113,171,315	186,057 A297447	NEW!
Total	7	1	5			850,232 A297447	
$\mathrm{q}=8$	1	1	7	6,035,005,477,560	6,053,968,231,350	234,937 A295353	NEw!
Total	1	1	7			234,937 A295353	

- Not a single zone discovered for $\Delta_{8,3,1}(x)$
- Out of 5 discovered zones for $\Delta_{8,5,1}(x)$ only the $6^{\text {th }}$ and $7^{\text {th }}$ (2 widest ones) were predicted correctly
- The $1^{\text {st }}$ zone for $\Delta_{8,7,1}(x)$ was also predicted correctly
- 4 new sequences were registered: A297448, A297447, A295354 and A295353

Out of 5 new discovered zones for $\Delta_{8,5,1}(x)$ theoretical models correctly predicted only 2. The prediction for $\Delta_{8, \overline{7}, 1}(x)$ was also confirmed.

RESULTS: $\mathbf{q}=\mathbf{1 2}$ (primes and values of \mathbf{n} for primes)
Sign-changing zones for $q=12$: primes

9	№	b	a	Beginning	End	\# Δ = -1	OEIS		
$\mathrm{q}=12$	1	1	5	25,726,067,172,577	25,727,487,045,613	8,399	A297355	NEW:	(1) $9.84 * 10^{16}$
Total	1	1	5			8,399	A297355		
$\mathrm{q}=12$	1	1	7	27,489,101,529,529	27,555,497,263,753	55,596	A297357	New!	(1) $9.78 * 10^{16}$
Total	1	1	7			55,596	A297357		
$\mathrm{q}=12$	1	1	11	Not found up to 5*1					

Sign-changing zones for $q=12$: values of n for primes $(\pi(x)$ function)

q	№	b	a	Beginning	End	\# $\Delta=-1$	OEIS	
$\mathrm{q}=12$	1	1	5	862,062,606,318	862,108,594,325	8,399	A297354	NEW:
Total	1	1	5			8,399	A297354	-
$\mathrm{q}=12$	1	1	7	919,096,512,484	921,242,027,614	55,596	A297356	NEW!
Total	1	1	7			55,596	A297356	
q = 12	1	1	11	Not found up to 5*				

- Not a single zone discovered for $\Delta_{12,1,1}(x)$
- Discovered zone for $\Delta_{12,5,1}(x)$ happened to be narrow and lower than predicted at $9.84 * 10^{16}$
- Discovered zone for $\Delta_{12,7,1}(x)$ happened to be narrow and lower than predicted at $9.78 * 10^{16}$
- Four new OEIS sequences were registered A297355, A297354, A297357 and A297356

In $5 * 10^{15}$ range theoretical models failed to predict both discovered zones unknown before. This requires explanation and change in the models!

RESULTS: $q=24$ (primes)
Sign-changing zones for $q=24$: primes

- Six new OEIS sequences were registered A295356, A295355, A297450, A297449, A298821 and A298820
For $q=2413$ new zones were discovered for $\Delta_{24,13,1}(x), \Delta_{24,17,1}(x)$ and $\Delta_{24,19,1}(x)$. None were found for $\Delta_{24,5,1}(x), \Delta_{24,7,1}(x), \Delta_{24,11,1}(x) \& \Delta_{24,23,1}(x)$.

RESULTS: $q=24$ (values of \mathbf{n} for primes)
Sign-changing zones for $q=24$: values of $n(\pi(x)$ function)

- 6 sequences registered A295356, A295355, A297450, A297449, A298821 \& A298820

For $q=2413$ new zones were discovered for $\Delta_{24,13,1}(x), \Delta_{24,17,1}(x)$ and $\Delta_{24,19,1}(x)$. None were found for $\Delta_{24,5,1}(x), \Delta_{24,7,1}(x), \Delta_{24,11,1}(x) \& \Delta_{24,23,1}(x)$.

RESULTS
The most "unfair prime number races" - the largest $\delta(q ; a, 1)$ and status as of 2018

$\#$	q	b	a	$\delta(q ; a, 1)$	Status (2018)
$\mathbf{1}$	24	1	5	0.999988	Not found up to $5^{*} 10^{15}(2018)$
$\mathbf{2}$	24	1	11	0.999983	Not found up to $5^{*} 10^{15}(2018)$
$\mathbf{3}$	12	1	11	0.999977	Not found up to $5^{*} 10^{15}(2018)$
$\mathbf{4}$	24	1	23	0.999889	Not found up to $5^{*} 10^{15}(2018)$
$\mathbf{5}$	24	1	7	0.999834	Not found up to $5^{*} 10^{15}(2018)$
$\mathbf{6}$	24	1	19	0.999719	Found up to $5^{*} 10^{15}(2018)$
7	8	1	3	0.999569	Not found up to $5^{*} 10^{15}(2018)$
$\mathbf{8}$	12	1	5	0.999206	Found up to $5^{*} 10^{15}(2018)$
$\mathbf{9}$	24	1	17	0.999125	Found up to $5^{*} 10^{15}(2018)$
$\mathbf{1 0}$	3	1	2	0.999063	Known up to $5^{*} 10^{15}(2018)$
11	8	1	7	0.998939	Found up to $5^{*} 10^{15}(2018)$
$\mathbf{1 2}$	24	1	13	0.998722	Known up to $5^{*} 10^{15}(2018)$
$\mathbf{1 3}$	12	1	7	0.998606	Found up to $5^{*} 10^{15}(2018)$
$\mathbf{1 4}$	8	1	5	0.997395	Known up to $5^{*} 10^{15}(2018)$
$\mathbf{1 5}$	4	1	3	0.995928	Known up to $5^{*} 10^{15}(2018)$

- Discovered 4 first ever zones $\left(\Delta_{12,5,1}(x), \Delta_{12,7,1}(x), \Delta_{24,17,1}(x), \Delta_{24,19,1}(x)\right)$ for 4 out of 15 most interesting and "unfair prime number races"
- In total 25 new $\Delta_{q, a, b}(x)$ sign-changing zones discovered
- In total 18 sequences were registered or substantially extended with OEIS
- Sign-changing zones for only 6 "most unfair prime number races" remain unknown Project implementation allowed to advance substantially in search for Δ sign-changing zones for the most interested "prime number races".

RESULTS: PUBLISHED DATA

A297006: $\mathbf{p}(\mathbf{x})\left\{\Delta_{3,2,1}(\mathbf{x})=-1\right\}$

A297354: $\boldsymbol{\pi}(\mathrm{x})\left\{\Delta_{12,5,1}(\mathrm{x})=-1\right\}$

A297448: $p(x)\left\{\Delta_{8,5,1}(x)=-1\right\} \quad \mathbf{A 2 9 5 3 5 4}: p(x)\left\{\Delta_{8,7,1}(x)=-1\right\}$

A297355: $p(x)\left\{\Delta_{12,5,1}(x)=-1\right\}$

A297356: $\pi(x)\left\{\Delta_{12,7,1}(x)=-1\right\} \quad$ A295355: $\pi(x)\left\{\Delta_{24,13,1}(x)=-1\right\} \quad$ A297449: $\pi(x)\left\{\Delta_{24,17,1}(x)=-1\right\} \quad$ A298820: $\pi(x)\left\{\Delta_{24,19,1}(x)=-1\right\}$

A297357: $\mathbf{p}(\mathbf{x})\left\{\Delta_{12,7,1}(\mathbf{x})=-1\right\}$

All data were published in The Online Encyclopedia of Integer Sequences (OEIS) as 18 separate sequences.

RESULTS: PUBLISHED DATA

All results are available at project repository at www.math101.guru (http://math101.guru/en/downloads-2/repository).

RESULTS: CONCLUSIONS

- Chebyshev's Bias was tested up to $\mathbf{5 * 1 0}{ }^{15}$ for selected 15 "most biased prime number races", established theoretically in 2013
- First sign-changing zones were discovered for 4 "most biased prime number races" out of selected 15 (6 still remain unknown)
- In total, 25 new sign-changing zones for delta were found
- It was confirmed that theoretical models fail to predict small and narrow zones that occur more frequently than assumed
- It was confirmed that theoretical models predict big and wide zones relatively well
- 18 sequences were registered or substantially extended with OEIS
- All zones were accurately and exactly defined (beginning, end, number of terms)
- Full and complete data are available to everybody
- Created software allows to test Chebyshev's Bias up to $2^{64}\left(1.8^{* 1} 0^{19}\right)$
- The article is under work for submission to «Mathematics of Computation»
Project implementation allowed to extend substantially our knowledge on Chebyshev's Bias and define the accuracy of theoretical models.

